Search results for "Tubulin polymerization"
showing 8 items of 8 documents
Molecular Classification of 5-Amino-2-Aroylquinolines and 4-Aroyl-6,7,8-Trimethoxyquinolines as Highly Potent Tubulin Polymerization Inhibitors
2013
Algorithms for classification and taxonomy are proposed based on criteria as information entropy and its production. It is classified a series of 5-amino-2-aroylquinolines (AAQs) and 4-aroyl-6,7,8-trimethoxyquinolines (TMQs) combretastatin analogues for anti-cancer activity. 5-Amino-6-methoxy-2-aroylquinoline AAQ showed anti-proliferative activity more potent as compared to combretastatin A-4 (CA4), against various human cancer cell lines and a multidrug resistance (MDR) cancer cell line. On the basis of AAQ/TMQ structure–activity relationship new derivatives are designed. The AAQs/TMQs are classified using nine characteristic chemical properties in molecules. Many classification algorithms…
Structural determinants of resveratrol for cell proliferation inhibition potency: experimental and docking studies of new analogs.
2010
International audience; Resveratrol is the subject of intense research because of the abundance of this compound in the human diet and as one of the most valuable natural chemopreventive agents. Further advances require new resveratrol analogs be used to identify the structural determinants of resveratrol for the inhibition potency of cell proliferation by comparing experimental and docking studies. Therefore, we synthesized new trans/(E)- and cis/(Z)-resveratrol - analogs not reported to date - by modifying the hydroxylation pattern of resveratrol and a double bond geometry. We included them in a larger panel of 14 molecules, including (Z)-3,5,4'-trimethoxystilbene, the most powerful molec…
Pyrrolo[2',3':3,4]cyclohepta[1,2-d][1,2]oxazoles, a New Class of Antimitotic Agents Active against Multiple Malignant Cell Types
2020
A new class of pyrrolo[2',3':3,4]cyclohepta[1,2-d][1,2]oxazoles was synthesized for the treatment of hyperproliferative pathologies, including neoplasms. The new compounds were screened in the 60 human cancer cell lines of the NCI drug screen and showed potent activity with GI50 values reaching the nanomolar level, with mean graph midpoints of 0.08-0.41 μM. All compounds were further tested on six lymphoma cell lines, and eight showed potent growth inhibitory effects with IC50 values lower than 500 nM. Mechanism of action studies showed the ability of the new [1,2]oxazoles to arrest cells in the G2/M phase in a concentration dependent manner and to induce apoptosis through the mitochondrial…
Synthesis of a new class of pyrrolo[3,4-h]quinazolines with antimitotic activity
2014
Abstract A new series of pyrrolo[3,4- h ]quinazolines was conveniently prepared with a broad substitution pattern. A large number of derivatives was obtained and the cellular cytotoxicity was evaluated in vitro against 5 different human tumor cell lines with GI 50 values reaching the low micromolar level (1.3–19.8 μM). These compounds were able to induce cell death mainly by apoptosis through a mitochondrial dependent pathway. Selected compounds showed antimitotic activity and a reduction of tubulin polymerization in a concentration-dependent manner. Moreover, they showed anti-angiogenic properties since reduced in vitro endothelial cell migration and disrupted HUVEC capillary-like tube net…
Insight on [1,3]thiazolo[4,5-e]isoindoles as tubulin polymerization inhibitors
2021
A series of [1,3]thiazolo[4,5-e]isoindoles has been synthesized through a versatile and high yielding multistep sequence. Evaluation of the antiproliferative activity of the new compounds on the full NCI human tumor cell line panel highlighted several compounds that are able to inhibit tumor cell proliferation at micromolar-submicromolar concentrations. The most active derivative 11g was found to cause cell cycle arrest at the G2/M phase and induce apoptosis in HeLa cells, following the mitochondrial pathway, making it a lead compound for the discovery of new antimitotic drugs.
Design, synthesis and structure-activity relationship of 2-(3',4',5'-trimethoxybenzoyl)-benzo[b]furan derivatives as a novel class of inhibitors of t…
2009
The biological importance of microtubules in mitosis and cell division makes them an interesting target for the development of anticancer agents. Small molecules such as benzo[b]furans are attractive as inhibitors of tubulin polymerization. Thus, a new class of inhibitors of tubulin polymerization based on the 2-(3′,4′,5′-trimethoxybenzoyl)-benzo[b]furan molecular skeleton, with electron-donating (Me, OMe or OH) or electron-withdrawing (F, Cl and Br) substituents on the benzene ring, was synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization and cell cycle effects. Adding a methyl group at the C-3 position resulted in increased activity. The most prom…
[1,2]Oxazolo[5,4-e]isoindoles as promising tubulin polymerization inhibitors
2016
Abstract A series of [1,2]Oxazolo [5,4- e ]isoindoles has been synthesized through a versatile and high yielding sequence. All the new structures showed in the 1 HNMR spectra, the typical signal in the 8.34–8.47 ppm attributable to the H-3 of the [1,2]oxazole moiety. Among all derivatives, methoxy benzyl substituents at positions 3 and 4 or/and 5 were very effective in reducing the growth of different tumor cell lines, including diffuse malignant peritoneal mesothelioma (DMPM), an uncommon and rapidly malignancy poorly responsive to available therapeutic options. The most active compound 6j was found to impair tubulin polymerization, cause cell cycle arrest at G2/M phase and induce apoptosi…
Synthesis of novel antimitotic agents based on 2-amino-3-aroyl-5-(hetero)arylethynyl thiophene derivatives
2011
Microtubules are dynamic structures that play a crucial role in cellular division and are recognized as an important target for cancer therapy. In search of new compounds with strong antiproliferative activity and simple molecular structure, a new series of 2-amino-3-(3',4',5'-trimethoxybenzoyl)-5-(hetero)aryl ethynyl thiophene derivatives was prepared by the Sonogashira coupling reaction of the corresponding 5-bromothiophenes with several (hetero)aryl acetylenes. When these compounds were analyzed in vitro for their inhibition of cell proliferation, the 2- and 3-thiophenyl acetylene derivatives were the most powerful compounds, both of which exerted cytostatic effects at submicromolar conc…